Question: Explain the concept of batch normalization and its advantages in training deep neural networks.Answer: Batch normalization normalizes the inputs of a layer within a mini-batch, reducing internal covariate shift. It stabilizes and accelerates the training process, enables the use of higher learning rates, and acts as a form of regularization, reducing the reliance on techniques like dropout. |
Is it helpful?
Yes
No
Most helpful rated by users:
- Explain the purpose of an activation function in a neural network.
- What is transfer learning, and how is it used in deep learning?
- What is a convolutional neural network (CNN), and how is it different from a fully connected neural network?