Question: Explain the concept of one-hot encoding and its use in machine learning.Answer: One-hot encoding is a technique to represent categorical variables as binary vectors. Each category is represented by a unique binary value, with all zeros except for the index corresponding to the category, which is set to one. It is commonly used in tasks like natural language processing. |
Is it helpful?
Yes
No
Most helpful rated by users:
- Explain the purpose of an activation function in a neural network.
- What is transfer learning, and how is it used in deep learning?
- What is a convolutional neural network (CNN), and how is it different from a fully connected neural network?