Question: What is the role of the activation function in a neural network's hidden layers?Answer: The activation function introduces non-linearity to the neural network, enabling it to learn complex patterns. Common activation functions include sigmoid, hyperbolic tangent (tanh), and rectified linear unit (ReLU). They allow the network to capture and model more intricate relationships in the data. |
Is it helpful?
Yes
No
Most helpful rated by users:
- Explain the purpose of an activation function in a neural network.
- What is transfer learning, and how is it used in deep learning?
- What is a convolutional neural network (CNN), and how is it different from a fully connected neural network?