Question: Explain the concept of kernel functions in support vector machines (SVM).Answer: Kernel functions in SVM enable the algorithm to operate in a higher-dimensional space without explicitly calculating the new feature space. They transform the input data into a higher-dimensional space, making it easier to find a hyperplane that separates different classes. |
Is it helpful?
Yes
No
Most helpful rated by users:
- Explain the concept of feature engineering.
- Explain the term \'hyperparameter\' in the context of machine learning.
- What is the purpose of the activation function in a neural network?
- What is the purpose of regularization in machine learning?
- What is the concept of a confusion matrix?